3.610 \(\int \frac{\sqrt{3 a-2 a x^2}}{\sqrt{c x}} \, dx\)

Optimal. Leaf size=94 \[ \frac{2\ 2^{3/4} a \sqrt{3-2 x^2} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt [4]{\frac{2}{3}} \sqrt{c x}}{\sqrt{c}}\right ),-1\right )}{\sqrt [4]{3} \sqrt{c} \sqrt{a \left (3-2 x^2\right )}}+\frac{2 \sqrt{3 a-2 a x^2} \sqrt{c x}}{3 c} \]

[Out]

(2*Sqrt[c*x]*Sqrt[3*a - 2*a*x^2])/(3*c) + (2*2^(3/4)*a*Sqrt[3 - 2*x^2]*EllipticF[ArcSin[((2/3)^(1/4)*Sqrt[c*x]
)/Sqrt[c]], -1])/(3^(1/4)*Sqrt[c]*Sqrt[a*(3 - 2*x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.0468306, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {279, 329, 224, 221} \[ \frac{2 \sqrt{3 a-2 a x^2} \sqrt{c x}}{3 c}+\frac{2\ 2^{3/4} a \sqrt{3-2 x^2} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{\frac{2}{3}} \sqrt{c x}}{\sqrt{c}}\right )\right |-1\right )}{\sqrt [4]{3} \sqrt{c} \sqrt{a \left (3-2 x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[3*a - 2*a*x^2]/Sqrt[c*x],x]

[Out]

(2*Sqrt[c*x]*Sqrt[3*a - 2*a*x^2])/(3*c) + (2*2^(3/4)*a*Sqrt[3 - 2*x^2]*EllipticF[ArcSin[((2/3)^(1/4)*Sqrt[c*x]
)/Sqrt[c]], -1])/(3^(1/4)*Sqrt[c]*Sqrt[a*(3 - 2*x^2)])

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{3 a-2 a x^2}}{\sqrt{c x}} \, dx &=\frac{2 \sqrt{c x} \sqrt{3 a-2 a x^2}}{3 c}+(2 a) \int \frac{1}{\sqrt{c x} \sqrt{3 a-2 a x^2}} \, dx\\ &=\frac{2 \sqrt{c x} \sqrt{3 a-2 a x^2}}{3 c}+\frac{(4 a) \operatorname{Subst}\left (\int \frac{1}{\sqrt{3 a-\frac{2 a x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{c}\\ &=\frac{2 \sqrt{c x} \sqrt{3 a-2 a x^2}}{3 c}+\frac{\left (4 a \sqrt{3-2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{2 x^4}{3 c^2}}} \, dx,x,\sqrt{c x}\right )}{\sqrt{3} c \sqrt{a \left (3-2 x^2\right )}}\\ &=\frac{2 \sqrt{c x} \sqrt{3 a-2 a x^2}}{3 c}+\frac{2\ 2^{3/4} a \sqrt{3-2 x^2} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{\frac{2}{3}} \sqrt{c x}}{\sqrt{c}}\right )\right |-1\right )}{\sqrt [4]{3} \sqrt{c} \sqrt{a \left (3-2 x^2\right )}}\\ \end{align*}

Mathematica [C]  time = 0.0122879, size = 51, normalized size = 0.54 \[ \frac{2 x \sqrt{a \left (9-6 x^2\right )} \, _2F_1\left (-\frac{1}{2},\frac{1}{4};\frac{5}{4};\frac{2 x^2}{3}\right )}{\sqrt{3-2 x^2} \sqrt{c x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[3*a - 2*a*x^2]/Sqrt[c*x],x]

[Out]

(2*x*Sqrt[a*(9 - 6*x^2)]*Hypergeometric2F1[-1/2, 1/4, 5/4, (2*x^2)/3])/(Sqrt[c*x]*Sqrt[3 - 2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 124, normalized size = 1.3 \begin{align*} -{\frac{1}{6\,{x}^{2}-9}\sqrt{-a \left ( 2\,{x}^{2}-3 \right ) } \left ( \sqrt{ \left ( 2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}\sqrt{ \left ( -2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}\sqrt{-x\sqrt{2}\sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{2}\sqrt{3}}{6}\sqrt{ \left ( 2\,x+\sqrt{2}\sqrt{3} \right ) \sqrt{2}\sqrt{3}}},{\frac{\sqrt{2}}{2}} \right ) -4\,{x}^{3}+6\,x \right ){\frac{1}{\sqrt{cx}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*a*x^2+3*a)^(1/2)/(c*x)^(1/2),x)

[Out]

-1/3*(-a*(2*x^2-3))^(1/2)*(((2*x+2^(1/2)*3^(1/2))*2^(1/2)*3^(1/2))^(1/2)*((-2*x+2^(1/2)*3^(1/2))*2^(1/2)*3^(1/
2))^(1/2)*(-x*2^(1/2)*3^(1/2))^(1/2)*EllipticF(1/6*3^(1/2)*2^(1/2)*((2*x+2^(1/2)*3^(1/2))*2^(1/2)*3^(1/2))^(1/
2),1/2*2^(1/2))-4*x^3+6*x)/(c*x)^(1/2)/(2*x^2-3)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-2 \, a x^{2} + 3 \, a}}{\sqrt{c x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*a*x^2+3*a)^(1/2)/(c*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-2*a*x^2 + 3*a)/sqrt(c*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-2 \, a x^{2} + 3 \, a} \sqrt{c x}}{c x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*a*x^2+3*a)^(1/2)/(c*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-2*a*x^2 + 3*a)*sqrt(c*x)/(c*x), x)

________________________________________________________________________________________

Sympy [A]  time = 0.790797, size = 53, normalized size = 0.56 \begin{align*} \frac{\sqrt{3} \sqrt{a} \sqrt{x} \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{2 x^{2} e^{2 i \pi }}{3}} \right )}}{2 \sqrt{c} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*a*x**2+3*a)**(1/2)/(c*x)**(1/2),x)

[Out]

sqrt(3)*sqrt(a)*sqrt(x)*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), 2*x**2*exp_polar(2*I*pi)/3)/(2*sqrt(c)*gamma(5/4
))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-2 \, a x^{2} + 3 \, a}}{\sqrt{c x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*a*x^2+3*a)^(1/2)/(c*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-2*a*x^2 + 3*a)/sqrt(c*x), x)